

Current status of invasions by non-native insects related to woody plants

Alain ROQUES INRAE Zoologie Forestière Orléans, France

Globalization is accelerating the establishment of non-native species in other continents Non-native organisms are quickly and continuously moved around the world

No saturation in the establishment of non-native insects in Europe (Seebens et al.2017)

but which species are benefiting from globalization?

The recent increase in non-native phytophages mostly due to species associated to woody plants

Yearly establishments of non-native insects on woody plants doubled during the last 50 years

Likely related to the recent 'blooming' in ornamental trade

Similar increasing trends all over the world An exponential or a linear increase despite strong differences in border controls

Key problem: recent invaders include a large proportion of « emerging » species

Many recent invaders have never been found elsewhere before they established in a continent other than the native one, eg. for Europe:

- Box tree moth, Cydalima perspectalis
- Honeysuckle gall-midge, Obolodiplosis robiniae
- Elm zigzag sawfly, Aproceros leucopoda
- Palm moth, Paysandisia archon
- Conifer Seed bug, Leptoglossus occidentalis

EAB- Agrilus planipennis and

ALB-Anoplophora glabripennis were "emerging" invaders when first introduced to the USA in the late 1990s

Same for the red turpentine beetle, *Dendroctonus* valens, when introduced to China

(Seebens et al., PNAS 2018)

Why an increase in « emerging » species ? Arrival of new species pools

New trade couples and routes: Origin (Donor) x tree species

(Roques et al., 2020, Front. Forest & Global Change)

Some recent invaders in Europe, witness of the diversity in source pools

Contarinia pseudotsugae Pityophthorus juglandis Thaumastocoris peregrinus

Xylosandrus compactus Platynota stultana Batrachedra enormis Lopholeucaspis japonica

Aromia bungii Xylotrechus chinensis Popilia japonica

Octodonta nipae Trachymela sloanei Nematus lipovskyi Neophyllaphis podocarpi

The « emerging » species

Continental Italy and France, the doors of entry

Urban trees, main facilitators for the establishment of non-native forest pests

- 89% of first records in urban/suburban areas (public parks, street trees, university campus, arboreta, zoos, and botanical gardens).
- **7% in forests** far from cities.
- Probability of occurrence decreased sharply with distance from the city.
- higher for sap feeders, gall makers, and seed/fruit feeders (>90%) than for bark and wood borers (81%).

Cities should thus be intensely surveyed

Hemiptera largely dominating the non-native entomofauna related to woody plants

As a result predominance of sap-suckers at guild level

More broadleaved colonized than conifers

(Roques et al., 2020, Front. Forest & Global Change)

The colonization of exotic trees by non-native insects is increasing faster than that of natives trees

Switch on native trees still limited 45% of the non-native insects remain sticked to exotic trees planted in Europe

Invader presence and damage in forests still limited unlike urban areas

- Most «important» invaders still sticked to urban ornamentals
 - Anoplophora spp. on broadleaved and citrus
 - Aphids spp. on all kinds of trees and shrubs
 - Scales spp. on all kinds of trees and shrubs
 - Rhynchophorus on palms,
 - Paysandisia on palms
- **□** A few species already impacting native forests:
 - Drycosmus gall wasp on chestnut forests
 - Cydalima perspectalis on box tree stands
 - Agrilus planipennis on Ash but only Russia and Ukraine yet
 - Leptoglossus on conifer regeneration
 - Aproceros zig-zag sawfly on elm foliage
 - Xylosandrus spp.
 - □ Other species impact exotic trees in plantation forests:
 - Adelges on Douglas-fir foliage
 - · Psyllidae, Eulophidae, Gonipterus weevils on eucalypt foliage
 - Phoracantha spp. on eucalypt trunks

Once established, a much faster spread across Europe after 1989

Comparative initial spread of the species first recorded after 1950

(Roques et al., 2016 Biol. Inv)

Arrival period

A number of species related to woody plants invaded the whole of Europe in < 15 years

Impossible to relate yearly long-distance jumps to natural dispersal for many species

(Roques et al., 2016)

Examples of very fast spread across EuropeThe American conifer seed bug first recorded in 1999

Leptoglossus occidentalis (North America)

(Lesieur, 2015)

The American Honeysuckle gall midge first recorded in 2003

Obolodiplosis robiniae (North America)

The Asian box tree moth first recorded in 2006

Genetic studies allowed to infer a complex invasion history in some species

Box tree moth and key role of ornamental trade

- ☐ Multiple introductions from Eastern China with ornamental trade
- ☐ Human-mediated dispersal with ornamental trade across Europe: Bridgehead effects from NL, Germany and Italy
- ☐ Local active dispersal by moth flight

Leptoglossus bugs: bridgehead and multiple introductions followed by long-range, human-mediated, dispersal combined with short- range natural dispersal

- ☐ Multiple independent introductions, at least 2 in Italy and Spain, probably much more : NW France, Spain, ...
- ☐ Bridgehead effects: primary invasive populations in eNA served as source for subsequent invasions in Europe... and not wNA
- Movements within Europe: flight+ hitchhiking + human-mediated transport= new bridgeheads

The Asian longhorned beetle, Anoplophora glabripennis

Multiple introductions and bridgehead USA/Gien

Javal et al., Mol. Ecol. 2019

Faster spread associated to ornamental trade especially obvious for recently-arrived species associated with eucalypts and palms

☐ foliage feeders and gallmakers (Leptocybe invasa, Ophelimus maskelli, Glycaspis brimblecombei, ...) colonized most of the Mediterranean in <10 years

VS.

☐ a much slower colonization rate by *Phoracanta* spp. (arrival 1969 and 1992) and *Gonipterus* spp. (arrival 1975 and 1991)

Direct trade of Eucalypts and Eucalypt wood with Australia limited: **Exchanges of ornamental plants for planting and/or cut foliage likely** responsible for the jumps from one Mediterranean country to the others (*Hurley et al., 2016*)

Invaders within EuropeThe pine scale, *Matsucoccus feytaudi*

Human mediation, natural dispersal and bridgehead

Kerdelhué et al. 2014

Take- home messages

- Insect invasions are accelerating with globalization without any evidence of saturation
- The establishment of emerging invaders is increasing with new trade routes and pathways resulting in promoting new species pools
- Urban trees act as facilitators for the establishment of exotic forest pests, and survey of cities should be a priority
- Once established, the non-native insects tend to spread faster than before in relation with the large development of trade of plants for planting between countries
- Most species still remain in urban areas, and quite a half did not switch from their exotic host to a native one
- Damage in forests due to invaders is still limited with noticeable exceptions
- However, it may correspond to the necessary time lag to adapt and we may face larger damage in the future
- In many cases, we are facing multiple introductions from native areas as well as bridgehead process from already-invaded regions

